2017年12月,一个名为“DeepFakes”的用户在Reddit上发布了一个“假视频”,把《神奇女侠》主角盖尔·加朵(Cal Gadot)的脸嫁接到一个成人电影女星的身上,但是看起来几乎毫无破绽。他利用了深度学习和AI新技术制作成了这个看上去以假乱真的视频。
DeepFakes实际上是一种人脸交换技术,顾名思义,也就是在图像或视频中把一张脸替换成另一张脸。事实上,人脸交换技术在电影制作领域已经不是个新鲜词了,但是之前电影视频中的人脸交换非常复杂,专业的视频剪辑师和CGI专家需要花费大量时间和精力才能完成视频中的人脸交换。DeepFakes的出现可以说是人脸交换技术的一个突破。利用DeepFakes技术,你只需要一个GPU和一些训练数据,就能够制作出以假乱真的换脸视频。
就Reddit上发布的视频内容来看,DeepFakes技术的效果似乎已经非常,,但其实总结了DeepFakes生成的全部视频内容的特点还是可以发现它的局限性比较明显,比如需要大量目标图片;用来训练的数据必须选择非常有代表性的图片;建立模型耗时相对较长,也需要投入资金建立模型和维护运行。
由于没有足够多Oliver的侧面照,所以网络无法通过观察学习,生成Oliver证件照。
虽然DeepFakes这一技术目前有一些短板,视频发布之后也引来不少讨论,网上不断有人发表文章和报道,抨击这一“换脸”技术,称这种技术将会对社会产生很多负面的影响。比如说,这个“换脸”技术会给很多无辜清白的人(像那些无故出现在成人电影中的艺人)造成困扰;“假视频”会加剧虚假新闻的散播,进而将大大损坏视频作为证据的可信度。
确实,心怀不轨的人会利用这项技术做危害社会的事情。但是算法本身没有价值观,人才有价值观,我们不能够因此完全否定这项技术的价值,我们应该好好思考,如何把它用上正道,发挥它的积极作用。
那DeepFakes可以应用的商业场景有哪些呢,未来或许我们应该发挥DeepFakes的积极作用。
据人工智能企业图普科技的Yuki介绍,好莱坞在电影制作时其实已经使用了这种技术,但是使用的成本并不是这么低的。如果好莱坞能够用这一技术制作出非常不错的电影或者视频,那么随着时间的推移,他们对专业视频剪辑师的需求一定会慢慢减少的。
这一技术同样能带来新的机遇,例如,让一些不知名的演员来拍电影,然后用,演员的脸来替换他们的脸。这可以用于制作YouTube视频或是普通民众拍摄的新闻节目。
在更多情况下,电影公司可以根据目标市场的需求来更换演员,Netflix能在拍摄前让观众自行选择演员。更有可能的是,这一技术能够让那些长时间没有动态的演员重新回到观众的视线。
YouTube上一些关于DeepFakes视频的评论帖子都在讨论这个技术会打造出一个怎样的恶搞图片软件。Jib Jab是一家销售视频贺卡的公司,多年来一直都在使用简单的人脸交换;但现在,它迎来了一个巨大的机遇。照片滤镜已经为Instagram和Snapchat吸引了大量的用户,而人脸交换App也已经有了很大的发展,Jib Jab有望引领下一个人脸交换的潮流。
这样的社交软件将会非常有趣,所以人脸交换的App完全有可能兴起一个潮流,前提是开发这些模型的成本足够低。
StarGAN这篇调研论文介绍了如何使用一个算法生成不同发色、性别、年龄甚至是表情。我敢打赌,、能够让你拥有精致小脸的App,会火。
想象一下,有了这项技术以后,Target只需要给艺人支付一笔费用,使用该艺人的一些大头照,再简单地点击一个按钮,就能让这名艺人连续一个月展示他们家的衣服。这不仅可以为艺人、网红和社交网络上任何有影响力的人创造一个新的收入来源,还能为商家企业提供了一种品牌推广的新途径。但同时,这也引发了一些有趣的法律问题,比如所有权的归属问题,以及关于如何分割和使用其价格权利的商业问题。
Loolet会让成衣公司在人体模特上拍摄他们的服装,选择配套的衣服,挑选一张模特的脸和一个姿势,然后就能制作出一张可以投放市场的照片了。更重要的是,他们可以在没有模特或摄影师的情况下随意改变照片的风格。
想象一下,当你在上网时,看到的所有广告中都有你和你的朋友,还有你的家人。在现在看来这可能有点可怕,但你很难预测在几年后这会不会成为一种现实。
总而言之,我们都是视觉动物,广告商这些年来一直在试图引起我们的情感共鸣:可口可乐将你的朋友放在一个嘻哈音乐视频中,希望向你传达欢乐;Allstate希望通过一个保险广告来缓解你的恐惧。除了这些以外,广告商引起我们情感共鸣的方式可能会更直接:Banana Republic(GAP旗下的高端时装品牌)可以把你的脸放置在一个与你匹配的身体上,进而从形象上说服你购买他们的皮夹克。
DeepFakes的原始用户像是开启了一个“潘多拉的盒子”,他们首先引起了人们关于假视频制作对社会的影响的讨论。现在,大多数人都已经接受了照片造假的现象,所以我希望在将来,我们也能够以同样的方式适应视频的虚假和不确定性。
DeepFakes还让人们真正地了解了这项技术的有趣之处。“深度生成模型”(比如DeepFakes使用的自动编码器)仅仅给算法输入了大量的数据案例,就能够帮我们创建一些看起来非常逼真的合成数据(包括图像和视频)。这意味着,一旦这些算法被转化成实际的产品,这个强大的工具将进一步激发普通人的创造力。
现在,这项技术已经有了很多有趣的应用,比如那些照片风格转换的App,只需简单的步骤就能让你的照片看起来像一幅名画。但是目前,这一领域的研究尚未成熟,技术的应用还有很大的潜力。